CFMA (Compute-Forward Multiple Access) and its Applications in Network Information Theory
نویسنده
چکیده
While both fundamental limits and system implementations are well understood for the point-to-point communication system, much less is developed for general communication networks. This thesis contributes towards the design and analysis of advanced coding schemes for multi-user communication networks with structured codes. The first part of the thesis investigates the usefulness of lattice codes in Gaussian networks with a generalized compute-and-forward scheme. As an application, we introduce a novel multiple access technique — Compute-Forward Multiple Access (CFMA), and show that it achieves the capacity region of the Gaussian multiple access channel (MAC) with low receiver complexities. Similar coding schemes are also devised for other multi-user networks, including the Gaussian MAC with states, the two-way relay channel, the many-to-one interference channel, etc., demonstrating improvements of system performance because of the good interference mitigation property of lattice codes. As a common theme in the thesis, computing the sum of codewords over a Gaussian MAC is of particular theoretical importance. We study this problem with nested linear codes, and improve upon the currently best known results obtained by nested lattice codes. Inspired by the advantages of linear and lattice codes in Gaussian networks, we make a further step towards understanding intrinsic properties of the sum of linear codes. The final part of the thesis introduces the notion of typical sumset and presents asymptotic results on the typical sumset size of linear codes. The results offer new insight to coding schemes with structured codes.
منابع مشابه
Compute-Forward Multiple Access (CFMA): Practical Code Design
We present a practical strategy that aims to attain rate points on the dominant face of the multiple access channel capacity using a standard low complexity decoder. This technique is built upon recent theoretical developments of Zhu and Gastpar on compute-forward multiple access (CFMA) which achieves the capacity of the multiple access channel using a sequential decoder. We illustrate this str...
متن کاملA Joint Typicality Approach to Algebraic Network Information Theory
This paper presents a joint typicality framework for encoding and decoding nested linear codes for multi-user networks. This framework provides a new perspective on compute–forward within the context of discrete memoryless networks. In particular, it establishes an achievable rate region for computing the weighted sum of nested linear codewords over a discrete memoryless multiple-access channel...
متن کاملAccess and Mobility Policy Control at the Network Edge
The fifth generation (5G) system architecture is defined as service-based and the core network functions are described as sets of services accessible through application programming interfaces (API). One of the components of 5G is Multi-access Edge Computing (MEC) which provides the open access to radio network functions through API. Using the mobile edge API third party analytics applications ...
متن کاملCommunication versus Computation: Duality for multiple access channels and source coding
Computation codes in network information theory are designed for the scenarios where the decoder is not interested in recovering the information sources themselves, but only a function thereof. Körner and Marton showed for distributed source coding that such function decoding can be achieved more efficiently than decoding the full information sources. Compute-and-forward has shown that function...
متن کاملOn the Achievable Rate-Regions for the Gaussian Two-way Diamond Channels
In this channel,we study rate region of a Gaussian two-way diamond channel which operates in half-duplex mode. In this channel, two transceiver (TR) nodes exchange their messages with the help of two relay nodes. We consider a special case of the Gaussian two-way diamond channels which is called Compute-and-Forward Multiple Access Channel (CF-MAC). In the CF-MAC, the TR nodes transmit their mes...
متن کامل